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The flow of a viscous, heat-conducting gas produced by an accelerating piston is 
analyzed numerically. The formation of a shock in a viscous flow is studied. A discussion 
of accuracy and practicality of a numerical analysis of the problem is given. It is con- 
cluded that, although very accurate results may be obtained, in principle, regardless of 
the Reynolds number of the flow, the assumption of a shock as a sharp discontinuity is 
the only practical way to handle flows whose Reynolds number per unit length is higher 
than loo. 

I. REAL AND ARTIFICIAL VISCOSITY FROM A NUMERICAL STANDPOINT 

Time-dependent computational techniques for inviscid flows have been the 
subject of a great number of papers. After more than a decade of studies and 
experimentations, it is clear that such techniques can work very well so long as the 
flow is continuous. However, in problems of practical interest discontinuities exist 
and are the most relevant features of the flow. The techniques mentioned above 
may work for a flow containing discontinuities only if these are smeared out 
artificially and replaced by a fast but smooth transition over several mesh intervals. 
Such an effect is obtained if the numerical scheme in finite difference form differs 
from the partial differential equations of inviscid flow for the presence of terms 
which can be interpreted as representing an artificial viscosity. Whether acknowl- 
edged or not, artificial viscosity is present in all computations of inviscid flows 
where discontinuities are smeared out. 

In previous papers [l, 21, an attempt has been made to show the inconveniences 
of using artificial viscosity, and a typical one-dimensional problem has been 
studied to prove that numerical computations of inviscid flows with discontinuities 
can be performed without artificial viscosity, provided that the discontinuities are 
properly treated. 
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If the flow itself is viscous, all discontinuities are naturally smeared out. It 
should, then, be possible to solve problems numerically by using a lm&difEerence 
scheme consistent with the Navier-Stokes equations and not containing artiticial 
viscosity. Three questions must be answered, however, before attempting general 
applications of a numerical scheme: 

(1) Is it possible to use natural viscosity to smear out discontinuities in a numeri- 
cal computation, obtaining the same e&cts as in the natural flow? In other words, 
is it possible to obtain numerically a good description of the structure of a shock 
wave ? 

(2) If the shock wave is too thin, and no artificial viscosity is used, are the results 
of a viscous computation as bad as those of an inviscid computation where no 
proper treatment is given to the discontinuity [2], and what should be done in this 
Case? 

(3) Is, by any chance, artiticial viscosity concealed in the numerical scheme 
and defacing the effects of natural viscosity? In other words, to what extent can one 
make sure that the numerical results depend on the actual Reynolds number of the 
flow, not on a fictitious Reynolds number due to artitIcia1 viscosity? 

The present paper is an attempt to answer such questions in a simple case. The 
results, however, can be easily extended to more complicated cases. 

II. THE PISTON-DRIVEN ONE-DIMENSIONAL VESCOUS FLOW 

A study is made of the viscous, one-dimensional flow produced by a piston 
starting from rest and accelerating until it reaches a certain speed; then, the piston 
proceeds at a constant speed. This problem has been chosen, instead of the problem, 
considered by other authors, of a viscous shock separating two regions of uniform 
flow, for three reasons: 

(1) The present problem is physically more realistic (it does not represent the 
collapse of a discontinuity, which cannot exist physically, but rather the formation 
of a fast transition, which is a physical fact), 

(2) Consequently, we have a way of testing whether an alIeged time-dependent 
technique actually depicts a physical phenomenon which takes place in time, 

(3) The numerical analysis of the transient shows very clearly how certain 
features appear which hamper the numerical analysis of the steady flow. By under- 
standing their causes, one can be guided to find out proper remedies. 

In the course of this analysis, we will frequently make reference to the inviscid 
flow problem having the same initial conditions and the same piston path. As long 
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as no shock is formed, an exact solution of the inviscid problem is available in 
closed form. This and the numerical solution extended to times following the 
formation of a shock are presented in detail in [2]. 

III. EQUATIONS OF MOTION 

The Navier-Stokes equations of motion are written in a nondimensional form. 
Pressure and density in the gas at rest are taken as unity, and P = In p. Non- 
dimensional temperature and entropy are 5 = p/p and S = P - y In p where y 
is the ratio of specific heats. The reference velocity, nrer , is the speed of sound of the 
gas at rest divided by l/r. The unit of length, Xrer , is arbitrary and the unit of time 
is trer = xrer/urer . A Reynolds number per unit length is defined by density, 
viscosity, and speed of sound of the gas at rest. If the relation 

p = .35 aPh 

between viscosity and the molecular mean free path, A, is accepted (where the 
quantities have physical dimensions), it follows that 

A = 2.12 1 -- 
pdF Re 

(1) 

in nondimensional form. 
In this paper the viscosity will be assumed as constant. Consequently, the Navier- 

Stokes equations are, in matrix form: 

.h+Bfi+s=O (2) 

where subscripts mean partial differentiations and 

f= [j, B= E k !], g= [$] 

VI = WzaYlP, vs = (we3 + QWP 

4 ZTr c,=---, c!2=(y- l)c,, 
YZry 

3 Re ” = - Re Pr 

(3) 

and Pr is the Prandtl number. 
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IV. A FIRST NUMERICAL SCHEME USING AN EVENLY SPACED MESH 

The equations of motion (2) are solved approximately by a numerical technique 
of second order accuracy. First, we attack the problem in a simple way, by using 
an evenly spaced distribution of nodal points along the x-axis. 

Let b = b(t) be the abscissa of the driving piston. The following change of 
coordinates is made: 

x = x - b(t) 

T= t. 
(4) 

The transformed equations of motion are: 

fr+ Afxfg = 0 (5) 
where c Y 0 

A= .Y- C 0, [ 1 c=u-6, 
ooc (6) 

VI = C,Uxx~lP, v, = (czu2 + Cflxd/P 

The values offat T + d T are obtained from the values off at T by the rule: 

f(T+AT)=f(T)+f~T+tf~T" (7) 

The values of fT are computed at T by (5). The X-derivatives in (5) are replaced 
by centered differences; the values of g are also computed using centered differ- 
ences, and stored. To compute fTT, we differentiate (5) with respect to X and 
then with respect to T, obtaining 

and a similar expression for J;T . 
The splitting of& and fm into two parts is necessary to avoid recomputation of 
derivatives in the numerical scheme. First, f $4 is evaluated, by using the equations 

cx = ux, 

and replacing the X-derivatives by centered differences. Then f $i is evaluated, in 
a similar way. 
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In this connection, the values of UT, PT , and Sr computed above are used. The 
values of gr are obtained by taking backward differences of the values of g at T 
and T - AT. The values of gx are obtained approximately out of centered ditIe- 
rences of the values of g computed previously. 

At the right boundary, located at a distance x0 from the piston, P, u, and S are 
assumed equal to zero. The piston point is treated as if the flow were only slightly 
perturbed by viscosity. Equations (2) are recast in characteristic form and the 
equation 

UP’ - yu’ = -av, + yv, (10) 

where denotes differentiation with respect to time along the characteristic defined 
by 

dx 
-x=U-a (10 

is used. For a point on the piston at time t + At, the initial point on the characteris- 
tic at time t has the abscissa 

x* = b(t + At) - (u - a) At (12) 

where u and a are averaged along the segment of characteristic. Since u at the 
piston is known, (10) allows us to compute P at the piston. The right-hand side of 
the equation is considered constant along the segment of characteristic and taken 
equal to its value at X* . 

The entropy is obtained by integrating 

Ds -v == 2 (13) 

between times t and t + At. 
At this stage, all the information necessary for the code is available, except the 

time step size. It is well-known that explicit integration schemes such as the one 
described above are only conditionally stable. In many cases the scheme may be 
unconditionally unstable. Criteria for determining the maximum time step size 
which can be used without generating instability have been established for various 
schemes but only for linear problems, generally with constant coefficients. The 
present scheme contains too many nonlinear effects and a criterion based on a 
drastic linearization of the scheme might be unrealistic. We have decided not to 
search for it. The labor involved, even after linearizing the equations, would still 
be too great. No closed form solution could be obtained. The eigenvalues of the 
growth matrix could be obtained only numerically and too many parameters are 
involved. 
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We prefer to resort to qualitative arguments and some experiments. In the 
absence of viscous terms, the Courant-Friedrichs-Lewy rule [3] can be applied: 

This means that the domain of dependence of the node to be computed must be 
wider than its domain of dependence as defined by the partial differential equations 
(that is, by the two characteristic lines converging to the node). The viscous terms 
have a diffusive effect; as long as the Reynolds number is high, the characteristics 
tend to be smeared out. Consequently, the domain of dependence of a node gets 
wider, and the right-hand side of (14) should be affected by a factor, less than 1, 
and decreasing with the Reynolds number. In its crudity, the above argument 
reminds one of a more elaborate discussion available in the open literature [6]. 
Obviously, if the Reynolds number becomes too small, the viscous terms eventually 
become more important than the inviscid terms; the physical meaning of the 
characteristics is lost and consequently a criterion based on a modification of (14) 
is meaningless. 

By numerical experimentation we found that, if 

At=e Ax 
max(l u I + 4 (15) 

is used instead of (14), the maximum value acceptable for E without infringing 
stability is given by Fig. 1. 

In conclusion, a lower Reynolds number entails a lower At/Ax ratio. It is inter- 
esting to note that, if the Reynolds number is low, Ax itself can be chosen fairly 
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ha 1. Stability parameter vs. Reynolds number. 
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large. If the Reynolds number grows, At/Ax can grow but dx must be made 
smaller and smaller. We are going to analyze the problem of the space mesh size 
in greater detail in what follows. 

V. DISCUSSION OF SOME NUMERICAL RESULTS 

We present the result of computations made with the scheme described above 
in three cases. In all of them the piston path is defined by 

“) = ];:479t - S4696025 
(0 < t < .7395) 
(t 2 .7395) (16) 

The piston path is so chosen that, if the fiow were inviscid, the Mach number of 
the shock would be equal to 2 once a steady state has been reached. 

In [2], it has been shown that a steady state is indeed reached for an inviscid 
flow, in a relatively short time. See Fig. 2, where some plots of U(X) are shown, at 
various values of t, as they result from a numerical computation. The steady state 
is practically well-established at t = 1.5. 

FIG. 2. 

2.0 

PISTON PATH 

SHOCK WAVE PATH 

0.5 1.0 1.5 2.0 2.5 3.0 

x 

Velocity distribution in the inviscid 600~ induced by an accelerating piston. 

Table I shows the values of the Reynolds numbers in each of the three cases, 
together with some information about mesh size, step size, and other data of 
administrative interest. The Prandtl number is always assumed equal to 0. The 
mean free path is computed from (l), assuming the values of p and T on the high 
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TABLE I 

case 
No Re x,, h Ax c N K t,, 1, trer to 7 

1 10 2. 0.05 0.04 0.02 51 6600 1.980 129.6” 0.66 1.31 99 
2 100 1. 0.005 0.02 0.25 51 600 1.2 14.15” 6.6 x 1O-z 7.2 x lo-” 179 
3 loo0 1. 0.0005 0.01 0.4 101 599 1.0 26.7” 6.6 x 10-a 6.6 x 10-a 4045 

N = total number of nodes xref = 1 cm, y  = 1.4, 
K = total number of steps p/p0 = 0.18 cme/sec 
to = value oft at which the computation was stopped f&c) = totrex 
r, = real computational time (on a CDC 6600 computer) 7 = tc/to = ratio between 

x0 = width of the computed region computational time and real time 

pressure side of the shock, after the shock Mach number has reached its steady 
value, M = 2. 

Plots of u(x) at various values of t are reported in Figs. 3,4 and 5. One can see 
that the u-distributions at Re = 10 are substantially different from the inviscid case. 
The perturbation is spread over a region much wider than the region defined by the 
piston and the characteristic issuing from the origin (the broken line in the figure) 
where all motion is confined in the inviscid case. The steepening of the u-distribution 

t 

1.0 

0.5 

0.5 1.0 1.5 2.0 2.5 3.0 
X 

FIG. 3. Velocity distribution, viscous flow, Re = 10. Results obtained by using a constant 
mesh sire. 
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PIG. 4. Velocity distribution, viscous flow, Re = 100. Results obtained by using a constant 
mesh size. 
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Fro. 5. Velocity distribution, viscous flow, Re = 100. Results obtained by using a constant 
meah size. 
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in the vicinity of the first characteristic, due to the coalescence of compression 
waves in the inviscid case, is much weaker here. When a steady state is reached 
(at about t = 1.5), the shock thickness is very large. 

In the Re = 100 case, the computation reaches a stage where compression 
waves, although diffused by viscosity, pile up to form a relatively thin shock. This 
is shown in Fig. 4, in which the shock path, as computed for inviscid flow, is 
denoted by a broken line. Fig. 6 again shows some of the u-distributions, compared 
with the u-distributions for inviscid flow. The similarity is now evident, as well as 
the smearing-out effect produced by viscosity in the vicinity of the shock. 

1.4 - 

1.3 - 

1.2 - 

t 

1.1 - 

LO- 

0.9- 
- lrdsclD 

A- CA!E 2 Re=lOO 
I 

L I  I  I  I  I  I  I  I  

0.8 0.9 1.0 1.1 1.2 1.3 1.4 I.5 
X 

FIG. 6. Typical inviscid and viscous (Re = 100) vehcity distributions. 

The most interesting feature of the results appears in Fig. 4 in the plots re- 
presenting u(x) at t = 0.9 and t = 1. The curve tends to wrinkle in the high 
pressure side of the sharp transition which we will call shock for brevity. Oscillations 
appear which have the same character as in inviscid computations according to the 
available literature [2]. Such oscillations do not denote instability of the numerical 
scheme (they cannot be eliminated by reducing &/Ax); they denote inaaxtracy. 
The mesh size is too wide; the truncation error, consequently, is too high [l]. In 
the first phase of the formation of a wiggle, l&t order effects am relevant; badly 
approximated first derivatives are not corrected sufEciently by higher order terms. 
The only remedy to such a situation consists of making Ax smaller. 
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The same effect, obviously, occurs sooner and in a stronger way if Re = 1000 
(Fig. 5). Again, in Fig. 7, some comparison is made between inviscid and viscous 
patterns and it is obvious that viscous effects are in this case confined to a very 
narrow region in the vicinity of the shock but that the value of dx is too big to 
provide sufficient accuracy to the computation. 

F 
I I , 1 I I 

I 

1.1 - 

1.0 - 

0.9- I 
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0.6 - 

0.7 - 

0.6 - 

I I I I I I 
0.4 0.5 0.6 0.7 0.8 0.9 1.0 

X 

FIG. 7. Typical inviscid and viscous (Re = 1000) velocity distributions. 

VI. A SECOND NUMERICAL SCHEME USING A VARIABLE MESH SIZE 

Reducing the mesh size to values which allow sufficient accuracy at the shock 
may turn out to be uneconomical. For example, the value of dx used in case 3 
above should be reduced by a factor of 10; one should thus compute 10 times as 
many points per step and the time step size would also be reduced by a factor of 10, 
according to (15), so that, for the same value of t,, as in Table I, the necessary 
number of steps would be multiplied by 10. The total computational time would 
then be multiplied by 100, rising T to 404,500. This is indeed a terrifying value, 
particularly if compared with the value of T for the inviscid computations shown in 
Fig. 2, which is 50. Obviously, 50 minutes of expensive machine time (at 
$1,2OO/hour) would hardly be justified by the nature of the results. A similar con- 
clusion can be reached in two-dimensional problems, where the flow field may be 
not as obvious as in the present one-dimensional problem (one is, thus, disposed 
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to pay a certain amount of money to get the result), but where the total computa- 
tional time must again be multiplied by lOM, if M is the number of nodes in the 
second space direction (the price to pay becomes once more too high). 

A compromise solution can be found in a variable mesh (nodes widely spaced 
at a distance from the shock, and clustered in the shock region). The value of dt 
is still going to be small since it is controlled by the minimum value of LOX, but at 
least the total number of nodes should not be increased. 

In planning the use of a variable mesh size, the following points have been kept 
in mind: 

(1) The stretching of the mesh should be defined analytically so that all the 
additional coefficients appearing in the equations of motion in the computational 
space and their derivatives can be evaluated exactly at each node. This avoids the 
introduction of additional truncation errors in the computation. 

(2) To assure a maximum value of dt, the minimum value of dx should be 
chosen at each step according to necessity and not assumed unnecessarily low. 
This means that the minimum value of dx must be a function of the steepness of 
the transition. 

(3) The minimum value of dx should occur inside the transition. 

We satisfy the conditions above as follows: Let 

x = s(t) (17) 

be the abscissa of a certain point in the fast transition region. We will comment 
later on about the way of defining it as a function of time. Instead of (4), we define 
the change of coordinates: 

x= [Dx + tanh ;$ - s, + E]/2 

T=t 
(18) 

where D, E, and ar are functions of t; in particular, 

D = 2 + tanh ar(s - b - x0) + tanh a(b - s) 
1.3x, 

E= -bD+tanha(s-b) 
1.3 

(19) 

Here, x,, is an arbitrary value, used to define the extent of the physical region to be 
computed; at each step the flow is evaluated between the piston (where x = b, 
X = 0) and the point x = b + x,, (where X = x0). 
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The transformed equations of motion are: 

where 
frf Afxfg = 0 

499 

(20) 

(21) 

From this point on, the computation proceeds as described in section IV, with 
obvious modifications to the expressions of Ax and AT. 

The first condition imposed above is obviously satisfied by (18); the stretching 
function is defined analytically. Now, we observe that s and OL are functions of I; s 
and cy define the location of the minimum dx and its value, respectively. Conse- 
quently, the stretching can be adjusted, in centering and strength, at every time 
step according to need. 

In the present problem a simple way of defining OL and s has been adopted. Let 
r, be the time at which the shock thickness 6, defined by 

“=-F 4 max 
(22) 

becomes less than 6dx. Let OL- be the maximum value of LY, to be used when the 
shock is steady. The thickness A of the steady shock is given by (25) below. We 
require the minimum dx at the steady shock to be equal to A/6. It follows that 

amax = % tanh-l(2.6dX) (23) 

approximately. In addition, a time t, estimated at which the shock is practically 
steady. The estimate can be made by drawing a straight line with a slope dx/dt = 
(U + a)Pisbn from the point at which the piston starts having a constant speed and 
determining its intersection with the inviscid shock path. Thus, 01 can be defined by 

0 (t G h) 

oL= 
t - t, 

OLmax t, - t1 (t1 < t < tz) (24) 

%nax 0 3 tl> 
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In the shock region, the entropy reaches a maximum (see Section IX below). 
The abscissa s of such a maximum can be defined by determining the node where 
S is the highest and by searching for the maximum of a parabolic fit of S on that 
node and the two neighboring nodes. The value of s so obtained is used in (17), 
(18) and (19). 

VII. NUMERICAL RESULTS, USING A VARIABLE MIBH SIZE 

Runs for Re = 100 and Re = 1000 were made. The pertinent values are reported 
in Table II, where the symbols have the same meaning as in Table I. 

TABLE II 

4 loo 1.2 0.005 6 0.0074 0.25 61 1303 1.5 84.28” 6.6x lo-* 9.9x Wz 850 
5 loo0 1.0 0.0005 60 0.00086 0.3 51 4200 1.218 256.11” 6.6~10-~ 8.04x10-* 31903 

FIG. 8. Velocity distribution, viscous flow, Re = 100. Results obtained with a variable mesh. 
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For the case Re = 100, the computation has been carried on up to to = 1.5, a 
time well beyond the one at which wiggles formed in the previous run with an even 
mesh. In addition, at t = 1.5, the inviscid flow is practically steady (Fig. 2) and 
we may expect that in the present viscous case a practically steady state should 
be reached sooner. As a matter of fact, after t = 1.2, there are no appreciable 
changes in the flow parameters in the present case. Fig. 8 shows plots of u(x) at 
various times for Re = 100 and one can compare them to Fig. 4. Fig. 9 has the 
same meaning for Re = 1000; this figure can be compared with Fig. 5. Note that, 
in the scale of Fig. 9, the shock appears as a sharp discontinuity. Actually, there 
are several points with different abscissae and ordinates in the apparently vertical 
line (see Fig. 13 below). 

FIG. 9. 

05 X IO 

Velocity distribution, viscous flow, Re = 1000. Results obtained with a variable 

VIII. SHOCK WAVE THICKNESS 

mesh. 

At this stage, the numerical scheme is submitted to the hardest test. So far, we 
have seen the shock build up strength and the flow behind it approach a uniform 
state in a way which is qualitatively satisfactory. Now, we want to make sure that 
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the numerical results are quantitatively correct, down to minute details of the shock 
wave structure. 

We begin with the shock wave thickness. This is defined, as usual, as the product 
of the minimum value of dx/dv by the jump in v across the shock, where v is the 
gas velocity relative to the shock. A well-known analysis [4] shows that, for con- 
stant p and Pr = .75, 

&I8 y 1 MZ - 1 ---- 
Re3y+1M1+yM2-~(y+l)M~~+(~--lI)M2 

where M is the shock Mach number. At M = 2, 
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RG. 10. Shock thickness vs. time. 

(26) 



NUMERICAL. ANALYSIS OF VISCOUS FLOW 503 

The shock thicknesses resulting from the computations as functions of time are 
shown in Fig. 10. It is interesting to note that the shock thickness adjusts itself to 
the predicted value very rapidly, as soon as a steady velocity jump is reached at the 
shock. 

IX. ENTROPY DISTRIBUTION ACROSS A SHUCK 

The somewhat surprising behavior of S(X) across a shock has been pointed out 
in [5]. Not only is the entropy higher at the high-pressure side than at the low- 
pressure side of the shock, as predicted by the Rankine-Hugoniot equations, but 
it reaches a maximum somewhere within the transitional region. The maximum is 
higher than the value of S at the high-pressure side of the shock. 

Once more we can use this result to test our numerical computations. Three 
figures are presented. In Fig. 11, the maximum value of S, as computed, is shown 
as a function of time. It is seen that the value predicted theoretically by [5] is 
rapidly reached in the accelerated flow. The computed steady value agrees with the 
theoretical value. 

Fig. 12 shows the location of points s, defined at the end of Section VI as a 
function of time. Since s is always contained within the shock transition, it is 
chosen to represent the location of the shock (in the scale of the drawing, at 

.02 OCASE I.Re=lO - 
A CASE4. Real00 
0 CASE 5, Re =I000 

FIG. 11. bhhum VdUe Of entropy vs. time. 

sw513-10 
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FIG. 12. Shock path. 

Re = loo0, the shock has no sizable thickness). In the same figure the shock path 
resulting from the inviscid computation (Fig. 2) is also shown. 

Finally, Fig. 13 shows, on an expanded scale, the entropy distribution across 
the shock as computed, in comparison with the theoretical distribution given in 
[5] (solid line). The agreement is good. 

x. VELlxrrY, F%EwJRE AND TEMPERATURE DBTRIBUTIONS ACROSS A SHUCK 

Fig. 13 shows also the computed distributions of velocity, pressure, and tem- 
perature across the shock, when the steady state is reached. Again, a comparison 
is made with the theoretical predictions of [5] (solid lines). In all cases, the agree- 
ment is very good. 

The results prove that a very accurate numerical computation of an accelerated 
one-dimensional viscous flow can be performed. The results show a correct depen- 
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FIG. 13. Entropy, pressure, temperature, and velocity distribution across the shock. 

dence on the Reynolds number. There is no interference of a spurious artificial 
viscosity but, instead, as Re increases, a smooth transition from the Muse pattern, 
typical of low Reynolds number, to the sharp shock discontinuity, typical of in- 
viscid flows. 
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In the three cases considered (Re = 10, 100, 1000, respectively), the calculation 
can be performed without using a prohibitive number of nodes and without 
exceeding reasonable limits of computational time. However, it is evident that, if 
a shock exists, the ratio T between computational time and real time becomes too 
high if Re is of the order of 1000 or higher. For Re = 100, a sizable reduction of 7 
is obtained by reducing the number of nodes and increasing a accordingly. For 
example, if N = 31, olmaX = 15, dx,h = 0.0066, a computation similar to case 4 
can be performed by taking 1198 steps to a value t,, = 42.45 seconds. This pro- 
vides T = 425. 

In conclusion, there is a lower limit for T, and it is very high. Such a situation 
may be tolerable in one-dimensional problems but it makes the perspective rather 
bleak for two-dimensional flows. However, our results show that for Reynolds 
numbers of the order of 1000 or higher, the shock thickness can be neglected and a 
sharp discontinuity, satisfying the Rankine-Hugoniot conditions, can be assumed 
in a flow otherwise satisfying the Navier-Stokes equations. By so doing, r is 
drastically reduced to values of the order of 50. 
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